IAD

SY-R3-70

ON THE KINEMATIC PROBABILITY OF TERMINAL
BALLISTICS WITH INITIAL DISPERSION

H. M. Hung

J. T. Wong GG L':n'
\B el

NATIONAL TECHNICAL
INFORMATION SERVICE

, " dm' arm M DD
i --k- uhile ralaeae and rele; §

) -“’»»"Q}.’u"_

————
—————
———

SEPTEMBER 1970

SYSTEMS ANALYSIS DIRECTORATE
U. S. ARMY WEAPONS COMMAND
ROCK ISLAND, ILLINOIS

Distribution of this document is unlimited.




ON THE KINEMATIC PROBABILITY OF TERMINAL

BALLISTICS WITH INITIAL DISPERSION

by
H., M. llung
J. T. Wong

Systems Analysis Directorate
U, S. Army Weapons Command
Rock Island, Illinois

September 1970
SY-R3-70






TABLE OF

TABLE OF CONTENTS . . . . . . .
ABSTRACT & + + & « 6 ¢ o o & & s
I. INTRODUCTION ., . . . . . .
II. STATEMENT OF THE PROBLEM
III. METHOD OF SOLUTION , . . . .
IV. SOLUTION OF THE PROBLEM . .
V. NUMERICAL EXAMPLE . . . . .
VI. DISCUSSION AND CONCLUDIONS .
VII, FIGURES . . . « o 4 o o o+ 4
REFERENCES . . + + « 4 o 4 « 4

DISTRIBUTION LIST . . . . « . .

CONTENTS

Page

i1

12
14
17
29

30



ABSTRACT

The terminal ballistic dispersion of a non-rotational, small-caliber
weapon system 1s obtained on a priorJ knowledge of the initial dispersion
induced by the weapon syscem proper,

The study considers a dynamic system whose behavior is governed by
a system of differential equations having probabilistic initial conditions.
The behavior of the system, in terms of the kinematic probability, is then
determined as a function of time and spatial variables.

Subsequently, in contrast to the customary method in the evaluation of
weapon systen effectiveness, a measure of effectiveness - probability of
hit - is obtained as a function of initial dispersion. Also, numerical

examples as well as discussion of the results are given.
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I, INTRODUCTION

Conventionally, the terminal effect of projectiles, related to a
weapon system, is analyzed based on a priori knowledge of the dispersion
at a target. The probability density function of the dispersion is
specified and its parameters are given. The probability of hit and other
effectiveness measures are then sought [1,2].

Such an approach is pertinent if we address ourselves strictly to the
problem of effectiveness at the target only, and the terminal dispersion
taken is well substantiated experimentally. When the projectiles are
related to a new conceptual weapon system for which no physical experiments
have yet been performed, a question naturally arises about the soundness
of the above approach.

To a larger extent than this consideration on the target alone, if
we are more concerned with the effectiveness of a conceptual weapon system
which incurs certain terminal effects on a given target, hoping eventually
to bolster the ratiorale for preliminary engineering design of the system,
it is hardly plausible that we could merely consider the terminal dispersion
as a priori knowledge. What appears to be needed in the treatment of such
a problem is a terminal dispersion obtained on the base of some criteria
pertaining to the weapon system proper,

We can schematically envieion three regions of concern: conceptual
weapon system, exterior ballistics and terminal effects, as shown in Fig., 1,

The region D which is the intersection of the regions A and B contains



infocrmation relating to the weapon system, whereas the regiun E which 1s
the intersection ot the regions B and C has intormation pertaining to the
terminar dispecsion. It 1s clear that intormation arises trom D, coupled
with B, would arrect information about E and subsequently abcut C. The
specific point ot concern now 15 what particular intormation teom D must
we generate and how should 1t arcive at E¢

Since a measurable information at E 1s the terminal dispersion, 1t
is reasonable to consider 1ts councerpart at D - the initial dispersion.
For this reason, the a priori knowledge on the initial dispersion cof a
conceptual weapon system is necessary, for it is formulated on the base -
our undecrstanding of the intrinsic properties such as weapon dynamic
parameters (3) or the system under consideration. The termina. dispersion
1s then rigorously sought analytically

In this report the probability distribution ot terminal dispersion
and subsequently some terminai eifects are cbrained to: a given target and
a given probabllity of 1nitial dispersion The probiem 1s considerea as a
stochastlc dynamic process tor a cime duration :zanging trom L, vt
The 1initial probabilicies of the kinematic, or state, variables - displa.e-
ment und veloclity - are given a priori.

As ot special 1nterest, an exterior ballistic model tor smdali mass 1s
considered. It 1s shown that a linear:zation or the system dynamic equatiun
can he realized A method of attack rendering the transtormation ot che
kinematic probabilities from one time to another is described. Solutions

of the problem are then presented A numerical example is given, and the

resuilts are discussed.



I1. STATEMENT OF THE PROBLEM

Let us consider a weapon aystem of caliber d delivering a small
projectile of mass m into a target. The projectile has a muzzle velo-
city, Vm, with respect to a given rectangular Cartesian coordinate system,
x-y-z, which is also an inertia frame, having the y coordinate axis in
the range direction. The range to the target is short such that the air
density p &nd the temperaturz in the neighborhood of the trajectory, as
well as the gravitational acceleration, g, can be taken as constant. It
follows the velocity of sound a, is also constant.

Also let us assume the air is almost still and the projectile moves
with its axis tangent to its trajectory. The only force acting on the
projectile are the drag and the gravitational force. We can now write

down the normal equations of motion for the projectile as follows [4)

% = -Kpd” V V_/m
= —l(Dpdz vV /o (2.1)

o3 2
z= -KDpd v Vz/m -8

where Vx,V and Vz are the components of V along x,y and z coordinate

y
axes respectively, and KD is the drag coefficient.

7t has been shown in (5,6,7] that KD can be considered as a function
of Mach number for (2.1) and for certain range of Mach numbers KD is

inversely proportional to the Hach.number of the projectile. Consequently,

it can be written as follows

Bao
KD v (2.2)



where B8 i3 a positive constant ¢f proportionality and depends on the
type of projectile, in particular, the geometrical configuration.
A simple linearization of (2.1) can be done by substituting (2.2)

into (2.1).

; = yX
¥ = vy (2.3)
zZ=yz-g

where y = -Ba, p d?/m.

Letting x = x,x, =y and x, = z, we can reduce (2.3) to a system

3
of first order linear system, with the initial conditions at ty = 0

specitied, as follows:

X, = X, 1=1,2,3
ij - X 3=4,5 (2.4)
ie =YX -8

and x, (0) = xg 1m1,2, *++,6

Now, xi is not deterministic for there exists initial dispersion,
Therefore, (2.4) is a system of stochastic differential equations with
stochastic initial conditions.

Our problem can now be stated succinctly as follows: given the initial

oint probability density function of xo, find the joint and marginal pro-
. 1

bability density functions of xi(t) for (2.4).



A natural follow-up question i1s as follows: given a target T, tind
the probability of xi(t) over T, which is the probability of hit.
In this report, we presume that xo, a random vector with components

0 : . : .
X has normal joint probability density function with independent marginal

probability density functions characterized by two parameters - mean “2

and variance (02)2. A rectangular parallelepiped target, as shown 1in

Figure 2, is considered, 1i.e,

3j
T = cE < < < < <
{(xl,x ,x3) IS1 xl 8,, 8 X 8 , 8 X

where 8, 1is specified.

i



11I. METHOD OF SOLUTION

For convenience let us consider, in general, a system of n first

order ditterential equations wrictten in matrix form

; - f(Y.t) t -0
9 (3.1)
y(0) =y
where y o T
y=,y, 'Yp)
T

f= (2 9f2’ S1s SRS ERT)

and
‘o O L T
y(0) = (y,y,» 'Yy -

Geometrically (3.1) describes the dynamics of a point in E® with
time t as a parameter., If the initial condition is known only probabi-
listically, then the solution of the vector equation (3.1) is a random
vector even though the equation itself is deterministic. Thus, we can
solve for the solution y, a random vector, by considering these equations

as 1f they were deterministic ones, and obtain the solution in the torm
n
y = ¢y ,0) (3.2)

We observe that i1n (3.2) ¢ 1is a deterministic transformation mapping the
random vector y0 derined on a probability space { into a new random
vector y detined on the same space as shown in Figure 2A, Moreover, this

mapping is deterministic. Hence, ¢ is probability - preserving 1.e.
P(yroA) = P(y’cA) (3.3)

where P denotes a probability distribution and A 18 a measu:ablc -ibse:

of the reals.



These notions lead us readily to an approach for solving (2.4) based
on the previous works [8,9]. For convenience, let us recapitulate the

results in a form of a theorem without proof:
Theorem

Given the system (3.1) and the initial joint probability density

function p(yo) at t =t If for all 1{,j=1,2, *** ,n

of
— | <M (3.4)

-

in the domain of definition, where M 18 a positive constant. Then, the

probability density function for t > t_., denoted by p(y,t), which

0’

satisfies the following partial differential equation

n a(pf,)
By —2 -0, (3.5)
=1 Y :
is given by the formula
o | &
p(y,t) = p(y) | %y l (3.6)
ay’ 0
where 5%— is the Jacobian of the initial vector y with respect to

the vector y.
Note that it is essential for this approach that the inverse of y

in (3.2), i.e.,

Vg™ o(y) (3.7)

h -1
where . _ 5 .

must be attainable in order to utilize (3.6).



IV. SOLUTION OF THE PROBLEM

We observe that the theorem is applicable to (2.4). Hence, our
problem reduces to obtain the inverse of the solution of (2.4).

Let us denote

T
x’ = (x?,xg, ves ,xg) (4.1)
and
x = (X ,x , *** ,Xx )T.
] 2 6
Solving (2.4) for xo, we obtain
0
X = Ax+B (4.2)
where
1 0 0 a 0 O
0 1 0 0 a O
0 0 1 0 0 a
A= (4.3)
0O 0 O b 0 o0
0O 0 O 0 b 0
[0 0 0 0 0 b
B= (0, O, :ﬂ?g » 0, O, "8)T (4.4)
a = (b-1)/y (4.5)
and e
b=e ! (4.6)

The absolute value of the Jatobian of (4.2) is then

e-3yt (4.7)




Now, the joint probability density function of x at any time t can
be written by using (4.2) with the normal joint probability density function

of x0 as follows:

=3yt 6 x,-v
p(x,t) = ———E——g——— exp {- %- L ( 10 & )2} (4.8)
(21!)3 ] oi iml 9
i=]

where
v, = ug 1=1,2,4,5

+ 5 (t+a)

and
+ ag.

o O w o

We have taczitly used the independence among the marginal probabilicy

densities of x0 as stated.

It follows that the marginal probability density of x is expressible

as
p(xi,t) = fEn‘l p(x,t)dx (4.9)
where n
d¥ = 1 dx for n=6, and
j=1
jri

the integral sign denotes n-1 1integrals over En-l. Thus we can write

with the use of (4.8) and (4.9) following results

x, - (v,-a v,..)
plx,,t) = expi- 3 [ 21— 1 12 (4.10
Y218 o
i i
where
g 0 e 042 .
Bi (a °i+3) + (b oi) i=1,2,3



and bx, -v
p(xi.t) = 5 exP [- % ( 10 1 )2] 1=4,5,6 (4.11)

2n oi oi

The mean of X, is expressible by definition as

r [

“i(t) = J-m X, p(xi,t)dx1 (4.12)

which yields the following results with the use of (4.10) and (4.11):

ui(t) VT lvi+3/b, i=1,2,3 (4.13)

,1(t) = vilb 1=4,5,6 (4.14)

Similarly, the mean square value of x, can be written as

. [ 2
E[x, ()] = J_xxi p(x, ,t)dx, (4.15)
which gives
8 av
Elx’(t)] = =+ (v, - —H3 )2 1=1,2,3 (4.16)
1 bz i b
Elx ()] = (o] + vi)/b7 1=4,5,6 (4.17)

Since the variance of X, is related to its mean and mean square value as

ci(t) - E[xi(t)] - ui(t) (4.18)

the following results are immediace

10



Ji(t) - 31/b2 1=1,2,3 (4.19)

oi(t) - [ug/blz 1=4,5,6 (4.20)

For the target T of (2.5) the probability of hit at a given time ¢,

Ph(t), can be obtained by first finding the joint probability density
function of X i=1,2,3; 1i.e.
t

p(x ,x,,x.,t) = | p(x,t)d¥ (4.21)
o 1E3

where

dx = dx_ dxs dx6
Subsequently, Ph(t) over T «can be written as follows

Ph(t) - JT p(xl,xz,xa,t)d; (4.22)

where dx = dx dx2 dx3 and the integral .:'ur denotes a triple integral

over T.

Substantially, by utilizing the results of (4.21) into (4.22) and

employing the notion of error functions, we obtain the following expresl1cn:\

3

P (t) = 131 [erf(n,,) - erf(n,, _,)1/2 (4.23)
where

Nygop = b8y g - ui)/v’zs1

Nyy = blsyy —wpsvae, .

11



V. NUMERICAL EXAMPLE

As an illustration, let us consider the following weapon system in

the milieu as given:

m = 3.774x10"° slug (85 grain)
d = 1.9685x10°2 £t (6.0mm)
8 = 0.25
a, = 1120.27 ft/sec
=3 3
p = 2,377x10 slug/ft
g = 32.174 ft/lec2

The system gives initial dispersion with means (ft) and standard

deviations (ft) as follows:

w0 - 3.x107° o° 1.5x107°
0 - —6x107 ¢ = 3.x107

% = 2x107 o) = 107

0 0
.. = 2.0 (ft/sec) o, = 0.1 (ft/sec)
.9 = 3500.0 (zt,sec) 0 = 50.0 (ft,sec)
pg = 3,0 (fr/sec) og = 0.2 (ft/sec)

A rectangular parallelepiped target T has the following dimensions

(fc) for its s :

1
s, = -2.0 s = 2.0
55 = -3-S ‘b - 3-5

12



Let us consider that T 1is zeroed in, and is situated at a range x;.
Since T 1is a volume target, let us specifically address ourselves to a
particular time t! which is related to x; with nil initial variance.

A deterministic relation can be readily obtained for t' from (2.4) as
follows:

| 1 1 0 0
t -3 In{l + y(x2 - xz)/xsl (5.1)

As an illustration, a set of ranges up to x; = 1000 meters is con-
sidered. For any value of x; in this set, (5.1) yields the corresponding
tl, and the results in Section 4 are then subsequently utilized in seeking
numerical solutions.

In Fig. 3 the "flight time" t' across the range xé of interest is
given. The rangeward mean velocity Mg is shown in Fig. 4. 1In Fig. 5
the mean lateral displacement and velocity v and . are shown. The
rangevard mean transverse displacement and velocity, by and L, are given
in Fig. 6.

Fig. 7, 8 and 9 depict the rangeward standard deviations, oy dand
0i43° respectively. The maxima of the marginal density funccion p(xl)
are given in Fig. 10, 11 and 12. Finally, the effects of target dimensions
and initial dispersion on the probability of hit Ph(t!) are shown,

respectively, in Fig. 13 and 14.

13



VI. DISCUSSION AND CONCLUSIONS

A solucion to the problem of finding the kinematic probability of
terminal ballistics, given an initial dispersion, has been presented in
this report. The feasibilit; of such a solution implies that the inicial
dispersion of a weapon system, rather than the terminal one, should be
addressed rigorously in a weapon system effectiveness study.

For any given range and target configuration, the terminal effective-
ness, such as probability of hit, is simply a consequential result once
the initial dispersion of the weapon proper is attained. In contriving
the preliminary design layout of a conceptual weapon system, the initial
dispersion is therefore one of the most significant factors for considera-
tions. It is a key juncture to the overall system effectiveness.

The method of attack presented here is general to the extent that no
constraint is posed on the probability of initial dispersion. 1Indeed, the
methods can also be employed for the cases other than normal distribution
as specified for the problem. The theorem is applicable to a nonlinear
system as well as a linear one whenever (3.7) 1s obtainable.

As we can observe from (4.2) and (4.3), Xi hence Xg are coupled
among each other. The common concern for an initial dispersion in terms
of the initial displacement alone 1s therefore not adequate. Clearly, we
should also take the initial velocity due to weapon dynamics 1in addition to
the muzzle velocity, into account for consideration of an injtial dispersion.

The result of (4.23) for a volume target can readily be applied to an
area target of rectangular shape by collapsing one dimension and letting

one-half of the difference of the error functions for that coordinate

14



assume the value of unity in computation. Moreover, (4.23) indicates
that Ph(t) for a volume target is bounded by one-half of the corresponding
value for the area targec.

Using (4.14) the absolute value of the mean striking velocity :;(t)

can be written as

6
= 1/2
u,(t) = [12“ v 17T /b (6.1)

We observe as uv(t) vanishes as t increases to infinity. On the other
hand, from (4.13) we can write the asymptotic value for the mean dis-

placement ui(t). i=1,2,3 as follows

ui(t) >yt :%3% (6.2)
which provides an upper bound for terminal mean displacement. The para-
meter y in (2.4) and (4.6) can lead us to consider 1l/ly| as the time
constant of the system.

The direction cosines a, of the striking velocity vector are
obtainable from the ratio of (4.14) and (6.1) as follows:

Yy
cos o, = —g———— 1=4,5,6 (6.3)

[: v2]1/2
g=s 3

We observe that a is time invariant; i.e., the a, at the terminal point

i i

coincidcs with that of any departure point,
It should be noted that the modeling does not involve rotational

effect of a projectile  Furthermore, the relation (2.2) should be observed.

15



The advantage in choosing KD in the form (2.2) is two-fold. It not
only reduces the nonlinear systems of (2.1) into a linear system but
also gives a "better" approximation to the empirical curves of KD for
the ranges of our concern (around 1 to 5 Machs), in contrast to the
customary assumption being constant,

The numerical results in Fig. 4 through 6 caan be obtained identically
® = ul. The standard
deviations shown in Fig. 7 to 9 are almost linear with respect to the

by solving (2.4) as a deterministic system with x =

range. The maximum of displacement probability density function,
p(xi)max’ i=1,2,3, decays rapidly before 400m as shown in Fig. 10, 11 and
12. 1In the same figures, the maximum of velocity probability density
function is shown having slow diversion initially up to a point about half
way of the range, and then an escalation,

In Fig. 13, 4it is shown that as the target dimension increases the
probability of hit Ph(tl)' increases as well. When the initial dispersion
decreases, Ph(t‘) increases as shown in Fig. 14. The sensitivities of
p(xl) and Ph(t‘) with respect to system parameters and initial dispersion

can be further investigated by using the results of the Section 4.

16
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13 ABSTRACT

The terminal ballistic dispersion of a non-rotational, small-caliber weapon
system is obtained on a priori knowledge of the initial dispersion induced

by the weapon system proper.
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of differential equations having probabilistic initial conditions. The
hehavior of the system, in terms of the kinematic probability, is then
determined as a function of time and spatial variables.
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